Complex Numbers

looking at the equation $x^{2}+1=0$ we see that there are no solutions in the real numbers.
We extend the reals by defining a value $i=\sqrt{-1}$ which gives us
the imaginary numbers
$\{x: x=$ ai where $a \in \mathbb{R}$ and $i=\sqrt{-1}\}$
We then define the complex numbers as
$\{a+b i: a, b \in \mathbb{R}\}$

Adding Complex numbers

Example:
$(5+2 i)+(6+3 i)=(5+6)+(2+3) i=11+5 i$

Multiplying Complex numbers

Here we can use FOIL
$(5+2 i)(6+3 i)=(5 \cdot 6)+(5 \cdot 3 i)+(2 i \cdot 6)+(2 i \cdot 3 i)=$
$30+15 i+12 i+6 i^{2}$
But since $i=\sqrt{-1}$ we have $i^{2}=-1$ so we get
$30+15 i+12 i+6 i^{2}=30+27 i-6=24+27 i$

Complex Conjugates

We note that that $(A+B i)(A-B i)=A^{2}-B^{2} i^{2}=A^{2}+B^{2}$ is always a real number.
We define the complex conjugate of $a+b i$ as $a-b i$.
One use of the complex conjugate is that when dividing two complex numbers we can make the denominator of our fraction a real.

Example:
$(5+3 i) \div(2+i)=\frac{5+3 i}{2+i}=\frac{5+3 i}{2+i} \cdot \frac{2-i}{2-i}=\frac{10+6 i-3 i+3}{4+1}=\frac{13+3 i}{5}=\frac{13}{5}+\frac{3}{5} i$

A note about \boldsymbol{i}

$i^{2}=-1$ but also $(-i)^{2}=(-1)^{2} i^{2}=-1$

So the equation $x^{2}+4=0$ has two solutions, $2 i$ and $-2 i$.

Quadratic Equations over the Reals

Recall that solution of $a x^{2}+b x+c=0$ has no solutions in the reals if the discriminant $b^{2}-4 a c<0$

However over the complex numbers there are 2 solutions.
Example:
$x^{2}+4 x+5=0$
$x=\frac{-4 \pm \sqrt{16-20}}{2}=\frac{-4 \pm \sqrt{-4}}{2}=\frac{-4 \pm 2 i}{2}-2 \pm i$

Note that the two solutions will always be complex conjugates.

